FTAATAEATYE IAMAEL "HEH 713, AT A S A% FIUNH
EFRIE A& & W= JFYT oo AHLA YA HFses ATNE=
SHAE ESRle Al dis] tst 2ol hi=ew, HkEA FoAR

SA Aol AFAANA Eolde BA EEF 72 HHEY

FRJAE AP ZlolElE 2%-5% #x)
%S

£l Ad
¥ pAAR T EER &4 AT ZAE A2 25 e A
o Adol web Holx /st HAAHE(AHAE, AH)ol UEY A=
i B d9lE Ay
. (5= AE) AAFET(Acknowledgments)
o (EERlE AE) d=f 25 WY a9 E vl3 (watermark)
. (EERlE AHE) FREIAY "HA2 A=), AA=EQ2)H 2ol ¥4
ol ((E2R1E HA) Ads, =88 R F8 Article info(AIAAZ, ISSN %)
3]

23] Adel BIARIE A NENE 6%-7% 1)
[e]

7 (EERlE AE) §3dA, T8A AA A
o ALA ERIERE ofye} BE FEUHA T4, L5(FAISE =F THs)ol
sl =ekel= Az
. (EE1E AE) AHAFET(Acknowledgments)
o (EERlE AE) AFERA HAL> 531(1), 5512)3 #eol WA
. (BEYRlE vAE) E3WE, 54 R e B T 535 V| EAHE

. 71e BAAY
7} et ZEIREW), A4E 5 AFHEE L AAF: =8, 539
TE BIAAS HY slol=g FYHA A
. SARDM AE A BA ARIE AR F ool st A B
EER=E
o AAAANIA ZHMBERIA) B BATEF A GAT AF)
3 UG ARE AARANAT S DSk, AAAAAA 1 F

l-'O
r

ETIR

| £20lE X2| ME(=2)

Funare Generarioa Compuier Systems T0 (20171 26-41

Contents lists available at ScisnceDirect oy
FEinis|
Future Generation Computer Systems
journal homepage: wenw elsoaier.comiflocaiefges —

Effects of dynamic isolation for full virtualized RTOS and GPOS guests

I [o =]

HIGHLICHTS

® ‘Weexamine and analyze howa RT0S Vi and a GPOS WM imteract and influence each other.

« ‘Weanalyre the explicit and mmplicit effects of dynamic isolation for vCPUs.
® The dynamic izolation shows low scheduling delay of ETOS and high throughpot of CROS
AH of the proposed concepds are implemented om a full-8edged hypervisor.

ARTICLE INFOD

ABSTRACT

Artiche history

Received 14 May 2016

Received in reviied S

15 Ouiober 2016

Accepted 17 December 2016
Asadlable aoldire I3 Decemnber 3016

Feswrds:

Embedided vinualizanion
Chynamic isoiatson
Fixed crinicalivy system
WP schiduling

Fadll virtualization

Industrial systens currently indude not only control processmg with realstime operating system
{RTOS) but also imformation processing with generalspurpose operating system (GPOS), Multicore-based
virtualization is an attractive opbon to provide consalidated environment when CPOS and BTOS are put
inservice an a single hardware platform. Researches an this techinology bave predominantly focused on
the schedulabidity of ETOS virtual machines (Vs by completely dedicated physical-CFUs (pCFUs} but
e rarely considened paralielism or the throoghput of the CPOS_ However, it is abso important that the
muticore=hased hypervisor adaptively selects pCPL assignment policy to efficienthy manage resources in
modern mdusirial sysiems. Inthis paper, we repart our stud y onithe effects of dynamic izalabion when two
mixed cribicality systems are workng an one platform. Based an our imvestigation of matual interferences
between RTOS Vids and GPOS Whis, we found explicit e fecs of dynamic isolation by special events. While
maintaining bow RT0S Vs scheduling latency, a hypervisor should manage pCPUs assigmment by events
driven and thresholdshased strategies o improve the throughpat of GPOS ¥Ms. Farthermore, we deal
with implicit megatiee effects of dynamic isolation cansed by the symdhronization mside a CPOS VM,
then propose a process of urgent boostng with dynamic solation. All our methods are implemented m
a real hyperviser, KV, In experimental evaluation with benchmarks and an automotive digital chaster
application, we anatyred that proposed dynamic isolation guarantees soft reakticee operations for KT0S
tasks while improving the throughput of CPOS tasks on a virtualized multicore system.

& 2076 Elsevier BY. All rights reserved.

L Introduction

guality and service. This trend has dso increased rhe number and
volume of electronic units, as well as their POWwer requirements.

Electionici and Tebstomsanications
Rgdareh Instuls

Traditional industrial computers consist of contral processing
software for simple missions. In recent years, industrial systems
[eg., consumer electronics, autpmobile, aeronautic Sectors, smart
phone, factory automation and grid computing] have been
launched with more powerful devices, o interface to mose
networks and sensing devices. Moreover, a larger variety of
application software is now required, with different levels of

Thus, the job of software mow Indudes not only hardware
control but also information processing for sensing devices, In
peneral, real-time operaring systems (KTOS) are used as control
processing software, since s rasks are mostly tme-crtical,
whereas |nformatbon processing software can be wrimen on
top of general purpose operating systems (GPOS) to maximize
throughput Those systems can be consolkdared inte a singbe
gystem by multicore hardware and virtualization technbques_ Same
research can be found in industrial domains that require RTOS
and GPOS applications to be simultaneously exeouted on a singhe
mlncose-based virtualized plarform | 1,2 | As illuscrated In Fig. 1,

hep:fjdedolacg! TOU 50 ba)| Saiupe 2016, 1100
DIE7-73T N0 2006 Elsevier BV All righis reserved.

| Mzt o] 8, M&F Bt H R(E-mail, AZH): BelplcHe) |

EEEEEEREEER |

ETIRI o
Rursdarch Ingliuls

_rum-r.mu-anuu Compurer Systems T (2017) %41 I

RTOS
Camisl Prazeasisg

Hyparvisor
Fig L. A RTOS and a GROS WA Jor 2 vamualized Dwal 05 Fatform for 3 mulnoone
racessar

the samghe system contadns a hardware contrel component and
data processing svstem realized by a verualization layer on a
multicane processor. This is an attractive option which enables
mvore sophsncated imdustrfad tasks to be accomplshed, reducing
overall system complexity and power consumption. However,
applicarions for RTOS and GPOS have different purposes. The real-
time property ks the most important when BTOS virual machines
are managed on & bypervisor. On the other hand, GPOS WMs regudre
high theoughput, in order to effickently utlize limsted resources
of the embedded rarget systems. Thus, the manner in which a
lypervisor comtrols s Vs for multi-0% has a crucial influence on
the outcome of given missions,

In a general multioore-based vimial exeoution environment,
load balancing is applied for efficient utilizatson of the multicore-
resource, while all virtual-CPUs (vCPLs) share whobe physecal-
CPUS (pCPUs)L Howeser, when GPOS and RTOS are put In service
with a single hypervisar, this approach negatively impacts the
scheduling Latency of RTOS due to the sharing of pCPUs with GPOS
VPLs because preempiion delay necessarily oocurs and additionad
scheduler overhead arises such as sysfem manigement mberrupt
(SMIL processor emerging from sleep states, cache migration of
data wsed by woken process, and block on skeeping bock [3,4

Prewious studees described real-time operations on KM,
Accordingly, the research in |5-7| predominantly facused on the
schedulabdlicy of RTOS YMs by CPU shielding and prioritization
while completely reserving pCPUS: As shown bn Fig Ha), FTOS
WMs could be svoided against negative impacts by the previous
stuwdies. They assumed thar the lower scheduling latency of RTOS
Whs was the most important consideration dunng conselidation
of RTOS and GPOS. As & result, GPOS WMs were nor allowed
o access rulicore resources, Unfortunately, the overhead does
not disappear entirely even with thelr method. Even though
the prioritization technigue is already applied, preempiion delay
necessarily oocurs and additonal scheduler owerhead arises,
Maogeaver, CPU resources dedicated for BTOS VMs are greatly
wasted because the tasks running on RTOS have enowgh scheduling
rarging, Therefore, resource-conscious assignment palicy of
phiysscal mubticores in a hypervisor becomes important when Dwo
different types of 05es are running together on a single hardware.

In fact, in [5,9L GPOS vCPUs were shared bepween RTOS-
reserved cares for high throsghpur withour CPU shielding. as
ustrated in Fig. 2(b) They allowed GPOS »CPLS 1o be run on
FETO5-reserved cores only when RTOS was sdle. Although they
treed to remove the negative [nfluences concerning the scheduling
latency of RTOS, efficlent resource sharing between the two
different VMs could not be achseved on the multicore processor is
o miich.

W think resource efficiency for computationally intensive jobs
needs 1o be regarded as important as the real tme property of
the control processing. Furthermore, RTOS tasks do not always
refudre a consgant level of responsivenass | 10,1 1) Even the Linux
operating system could be applied in a safety-criticad spacecraft
domain without hard real-time |12,73]. Therefore, a hypervisor

must adaptively select pCPU assignment policy based on the
dernanded responsiveness of tasks.

In this paper, we present a dynamic solatbon method, which
s a pCPU assignment poliey for multicore-resource efficlency,
conskdering consolsdation of RTDS and GPOS VMs, and then
analyzed what effects should be controlled by the method. The
goal of the study 15 improving the overall resource efficiency of a
virmuialized system by addressing some of the negative impacts that
the GPOS WM has on the latency of the RTOS VM. The proposed
dynamic solation doss not completely remmove all of the negative
effects, hence we clalm that using dynamic CPU isolation method
puaraniees soft real-time on the RTOS WM while signdficantly
Improving the throughput performance on the GPOS VM at the
sarme time, resudting in imgprovement of multi-core CPU wilization
rate, While our base consolidated environment shares pCPUSs with
CPU sheelding amd préorinzation technbques, a hypervisor witl
our dynemic isolanon should make decisons about when and
how to isclate RTOS and GPOS Vs on BTOS reserved pOPUs o
reduce negative influences to RTOS VMs. However, the state of
each fask in guest operafing systems is mol mansparent to the
bt Ln full virtuabization layer [14]. This semantec gap fosces the
hyperdsor o make decksions when to or how to Bolate guest
operating systems on el In order 1o resolve the challenge when
full virtualization 1s used tor reusability of industrial system, we
analyze the Interactions and mutual mfluences of RTOS Vs and
GPOS WMs, This anabysis does not pertabn to real-time scheduling
algorithms, Based on the analysis mstead, appropriate factors and
podnts were kdentified for the dynamic isolamon

We perform experimental analysis of explicit effects by
both event-driven and threshobd-based approaches. In our best
pracrices, those approaches allow sach BT0S and GPOS VM o meet
thee requirement of improving resource efficiency and minimizing
negative influences 1o scheduling latency. However, since the
prioeiny of GPOS wOPUS is always bower than that of RTOS wCPUs,
the CPOE wCPUs can implicidy waste pCPU cycles by the well-
kmown synchronizaion problems, such as lock-haolder preemprion
{LHP} [15] and hidden cost probiem [16] Hemce, we also propose
urgent boostig with dynamic isolation 1o reduce unnecessary
CPU cycles. Lasdly, we performed a set of experiments on an
autormonve digital cluster application and verified whether the
remdertng frame rate on the digital cluster is malntained ar soft
real-time bevel with worst case frame rate.

All schemes were implemented and evaluated on the well-
known open source full viralized hypervisor, KVM [17] we
evaluared whether our methods enabled RTOS and GPOS VMs o
run in 3 maltcone-based hypervisor while improving the resource
effickency and the perfarmance of CPOS whibe awoiding high
scheduling larency on RTOS VM,

The primary contributsons of this research are as following.

— Our analysis suggests thar staric lsolation only maintains low
latency of RTOS with the rrade-off of degrading the throughput
of GPOS wille fully time-sharing enhances GPOS throughput
and bncreaxses rhe scheduling latency of RTOS. We examine and
analyze how an RTOS VM and a GPOS VM inferact and influence
each other when they are integrated on a virualization Liyer.

We introduce dynamic lsolation method, which guaranmees

soft real-time operations for RTOS tasks while improving the

throvghput of GPOS tasks on 2 virtualized multicore system.

Events for dynamic Bolation i fell virmalized systems are

Investigated 1o analyze dynaméc isolation effects.

- We analyzed the explicit and implicet effeces of dynamic
isolacion on the synchronization method for vOPUL Evaluation
of our experiments revealed coupling dynamic (solation
wirh vCPU coordinated scheduling has a positive impace on
performance. In the experiment of an induserial application
moreover, the RTOS VM guaranteed stable performance and
GPOS increasing throughput at the same time even though the
HTOS W and the GPOS W were sharing the same CPU cores.

| X7t oi8: garele w2| |

-H.l:unﬂ-nmﬂcm Campurer Systems T { A7) 2641

ETR

Resanch Instiute

Fg T Amoimotve digeal cluster hardware and dapliy.

[L
T Frama par ey o migied rherie ow ke 1A 4

J | gy S
Wrgim
|] - Bt

adidine redi ¢ Mo == P

Fig 18 Effect of dynamic isolaten {frame rare oo T0S ¥ and execution tme on
GRS WML

quality of senace (o5 or SLA From the viewpomt of KTOS, if
the worst case execution ome (MICET) can be safely guaranresed
i a virmalized environment, the RTOS-reserved resources can be
further exploited by GPOS »CPUs within the limit of the WCET of
each RTOS task, althaugh it might depend on clicumstances. In
our experiment about the automotive dizital cluster, we kdentified
a threshold value where rendering frame rate change became
significant in soft real-time level Therefore, fine-tuning for SLA or
Qo 18 necessary dependingon bow much latency s required by the
application If our approach is applied to real induserial systems.

In practice, Fiz 15 shows that the scheduling latency value
of ATOS was higher with the application sredamcluster on the
GPDS in contrast with results of other applications. This symifies
that the behavior of applications ts related o scheduling delay.
In future works therefore, we will seek to dynamically analyze
the behavioral characteristics and workload of applications and
astempt o xpply 1o hy pervisors the proposed techniques according
w the type of varous gven missions, scenarios and system
performance,

7. Related work

The domain of virealization Il varbous systems increasingly
incorporates the simultanesus ruaning of GPOS and BTOS on one
hardware platform [1,2.5,5,36-338]. Ma et al. [5], Kiszka [6], and
Katharina et al. [37] mvestigated configurations for running these
mwio [ypes of operating systems in KM vimualized environments
KW is 3 TYPE-I fully virmualized open-source hypenvisor, and it
s based on the Wnux kernel module and the QEMU framework.
The CPMU on KVM s hardware-assisted, and 1JO devices are
wirtalized using the emulation features on QEML. Occasonally,
para-virtualization via the VirdD driver is used for performance
reasons. in KVM, the wCPLF bs implemented as & thread The data
structuge in Limix kermel can be accessed to change its scheduling
policy and priotity. S0, previous studies sought ways Do protect

muslthoore resowrces reserved for RTOS by means of priontization,
CPU shipdding. and wvterrupt affinity when HTOS VMs and GPOS
Wil were sharing a hardware platforme However, they took
account of guaranteeing only the real-time executeon of ETOS tasks
and exchuded performance of GPOS tasks.

A few works exisr that loaked at environments in which a
GPOS and an RTOS were sharing a hardware platform |8.5,36]. In
thelr scenarios, the hypervisor allowed execution of GPOS tasks
only If the state of the RTOS was ke, to minimize any negative
effeces on the RTOS VM by the GPOS. In particalar, Nakajima
er al [36] stpulated that the scheduling Ltency of BTOS needs
to be minimized and the throwghpur of GPOS maximized for
the purposes of investigations and introduced a virtualization
Layer for emmbedded systems called SPUMONE. In SPUMONE, the
GPOS allows sharing ATOS-reserved cores when the state of RTOS
I5 idie. Owr proposed dyramic isolation method s similar o
them. Howewver, SPUMONE should share the host kerel with
Its RTOS VM in privileged mode, analogous 1o the multi-kerne
approach. Moreover, implementation of SPUMONE necessarily
involves modificaon to the source codes in the guest and host
operating systems, thus this & specific to thelr own design. The
CPU migration strategy of SPUMONE is made possilile as the
imnards of the guest are ransparent onky o their kypenisos. Also,
SPUMONE |29] mitigated the LHP with CPU migration, but this
solution bs available i che rernal states of the guest operating
systems are visible fo the hypervisor. This s not an svallable option
for general cases and the approaches cannot be easily applied w
well-known open source hypenisos.

Our work feouses on looking ar the general types of mutual
Influences between FTOS awd GPOS i a well-known open source
hypervisor, and proposes ways oo lmprove resource effsciency
while the scheduling Latency of RTOS & kept with minimal
negative Influences against shared GPOS VM. Moregwer, we
analyzred the hidden cost caused by wirtual IM and LHP due
o synchronizaton bepween vOPUS and further proposed wrgent
boosting with dynamic isolation: This techngue was considened
not only with dynamic isolarson, but ao with vCPU co-scheduling
technigue, and solves the problems all together.

B. Condusion

In this paper, we treated [ssues that coold arse in the
operation of multicore-based hypervisors far industrial sysrems
and suggested feasible solurions for them. Based on our analysis,
dynamic isolation can improve the throughpur of the GPOS while
avolding the high scheduling Latemey of the KTOS wien an RTOS
and a GPOS are put in service on one hardware pladform with a
virmualizamon Liyer. Appropriate factors to solate RTOS YMs and
GPOS VMs were determined with just the restricted set of data
available by a virualizathon Layer.

Alse, we verified thar dynamec isolation method indirectly
addresses the hidden cost of virual IPls and LHPs while running
muli-threaded applications on a viralizanion environment.
Thas, wirh co-seheduling and dynamic isolation methods applied

Elegtranii and Telstomsnriiationd

E T I_I Elegtrarios arnd Tel e ation
b Rirsearch Institule

-Fl.lrLull' Generacion Compuier Sstems T 2007) 2541 41

simultaneously, performance of the mixed system significantly |20} Resd-zime linux cyclicrest ropfirowikikemelongiindec phiCycliceess {ac-
Improved. All works were impiemented in a weil-known open cessed on 2410 IEY
spurce hypervisor, KVNL P
In addition, the discussion sectan treats hmitations of this re-
search and areas of applecation for the future works. Nevertheless,
our research introduced novel work to explore and achleved im-
proversents (n the operanon of YMs in 3 multicore-based virnwal-
lzarion system with a KTOS and 3 GPOS runming simultaneously.

g acrons e cumao: I:.:.-Hs.
from the hvp-er.dsm musﬂ'—spm Inc Liss Sympasium, Viol. 100, 2008
24 Peri Toal it vx) (accessed an 24 ULIGL
I AMAE BEFOIE e I 25] dnteL inied 64 and 1232 architecrres sorware developer’s Maseal, volume
R T il I SYWIEM POOZTAMATitg Puide, part 2, HHL
Dratha f

Acknowledgments

Refereinoes

1) W. Erver, Appiying mulu-mrr anu vimualizaron o indesmrial and
salery- relu:nd application. fadioiL oo - i
Fy A ol {acreseed oo 24 1L 161
121 I:..}kls:f 'runull::r'gn-mbeddtdl-.-nm hy bothes? n: Prose edings of the
&5zh Design Amiomarion Conlerence, 200 1, pp. 900505,

|3Z) Lui SI'I.I.. |.'| al,, Sln,ﬁt' Core Lquw.urr 'l.'lrual Machines for Hand RHI—TIrrt

13) Frank Rowand, IJ:In;l.rl.dHnd:mmdlng:hrkea.-ﬂmrtwbcmsrknchmri ';":*"'_P"""'i on Mulsese Processors, 2014, i Jde abs i
I:'rdrd.dﬁ: N conference 2002 hopc)felimoonng | meages i 1 R !
swwanl pil {accessed an 24, WLIGL |33 ww o clou-

14 Ft‘u-pf Cerquenia, Boemn Brandenburg, A Comparison of Scheduling Larency in
Linus, PREEMPT KT, and LITMUSET, in: Sth annual workshop on Opesating 134}
Systems Lo for Em-bedded Real-Time applicariors Jaby 8, 2113, Paris,
France.

15} E

LA
|6} J. Kisxica, Tewwands Linus &5 a real-ime hypervised, in: Provesdings of the 11ch -
Real-Time Linux Wrkshop, 2006, pp. 205-215 135} Tatsua Maicajima, Yuk! Kenebuchi, Hiromasa Shimads, Aiesandre Courba,
|7] Tomaski 5"-"!"“"*- mP’“""’“""' Rl e exiptreamoe oF KM JomitE! Taung-Han Lin, Temporal and spatiad Isolation in 3 vimsalization Layer Tor
2012 EaE Ay ' miulti-rore processor based information appliznces, i Proceedings of the
16 Asia and Soarh Facfic Design Mnnmulm n:ur.rmr..:e 018,
¢ al, Prateus Bype
]

Amalvls and S Do BT e erg. 3011,

138} P. Carciz, et al Towands hardwase embedded wimadzanon sechaodgy:
archirectural enhancements @ an ARM So0, in! VIRES 3013 Warkshap on
Vinualzation ke Real-Teme Embedded Systems Meagust 1 0st, 2003, Taipe|,
Taiwan.

3, I architecrune far veal-
time prnbedded systems, in: Procesdings of the &2h Inmmationg] Workshop on
Dperaning Systems Placlonmd for Embedded Real-Time Apphcanions, OGPERT,
Bressels, Bedgium., 201 E0.

|E2} Kesvin Scharpl, Dawe Svan, Mike Anderson, The Use of Camier Grade Linus in
Space. [2007), in: Proceedings of the Al-AAJUSU Conlerence oo Smafl Sasellives,
Tﬂl‘lrl.lﬂlSIﬂnn KUz Softvware, SS007T-0-5,

E3| Chr
B i

H K -

| US| T.Frietsl, 5 Biewaeter, How to deal with lock halder preemprion Presereation
i Xen Sammit North America, 200E,

| B} Misowirg Ddng, Fhillip B. Gibbors, Michasl A Komoch, A Hidden Cor
of Wipaalizaton when Scaling Multicore Applica-tions, in: Sth USEMIX
Wikshop an hot 10pics in clound compu-og{HerCloued™ 3), jun 2083, San
Josze, CA

| E7j A Kwity, L. Lublin, A Liguor, EVM: the L wirual machine monior, e

Proceedings of the Linux Symg=siuns, Vol 1. 2007,

F

71 A2 (E-mail, A2H): o= He |

Electrenic snd Telscomsanications
E I I b Rirsearch Institule

=22t XNe2| 4E(55)

2B EESH 10-1337444

G (19) 992833 (R) (45) F32UA 2013124059

(11) FHEE 10-1337444

(12) 553 FE(B1) (24) FR9Y4 2013d114204

(51) FagPEH 5
Bl 12/02 (
(21) &9l

(2] &gl ela
R e
(65) EAdE
(43) Figlal
(56] 15 7| 340

KR 1020010073355 A
FR 102000006587 A

{Int. CI.) (73) =& =

2006013
10-2010-0113060

200duged (72) bt}

2013doedi 129

1-2012-0052686

2029064249
i |

KR 102000002 1605 4 (& o)
(74) chalel
L ah Ll
VI Mapgk = o)Es}

4 A7 5
&}

(54) si=ds| =

44 HEHa 440l 34 W o ¥

A WES I ool d JFE RPN ¢ gl A4 MENT slEdeld %A o I Fe del Aag

o, A, g

AefgEst ddd AUS sldsgiy westa, ddd AfUsct Hud QY= o)

Y OES S R A 4d HEE dawta, 1SR Isrerrupt Serviee Routinedd ©lE7 Yo s o

sheta], EE Y

4E FHebEs dEdeids Y A0E B8 F EE, o8 4 04 ARz £48

Egags| Aw AE eRA 4 dek

FXF E-%1

E T r'ﬂ Elect 4 Telisamenrication
‘k Rawrarih Ingliguis

SEE6 101337944

(T2} st

of v g qHE grrdTFARgd
A il &

T
b

]

A2l

